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Abstract An extended group function model is introduced
for the calculation of intermolecular interactions. The model
is formulated within the framework of the energy incremental
scheme. In the calculation of intra- and intersystem energies,
model systems are introduced. To each subsystem is associ-
ated a set of partner subsystems defined by a vicinity criterion.
In the independent calculation of intra- and intersystem ener-
gies, calculations are performed on model systems defined by
the subsystems considered and their partner subsystems. To
further reduce computation time, dual basis sets are intro-
duced. A small and a large basis set are associated with each
subsystem. For partner subsystems in a model system, the
small basis set is adopted. Test calculations are performed on
helium atoms in one- and two-dimensional lattices.

1 Introduction

Intermolecular interactions govern the behaviour of matter
in bulk from gas imperfections, molecular scattering cross-
sections and transport properties of gases to the liquid and
the solid state. Prediction and explanations are based on the
concept of the intermolecular potential energy surface (PES)
which is defined in the context of quantum mechanics, As
for ab initio calculations of PES, nowadays, it is possible
to obtain reliable PES for small clusters comprising closed
shell species [1]. However, there are exceptions. The calcu-
lation of the binding energy of the beryllium dimer, a very
small molecule, is still a difficult task for most of the conven-
tional models in this field [2]. If we consider larger systems,
new methodological developments are required in order to
obtain a practical ab initio tool which can be applied for
these systems.

Intermolecular binding energies are usually one or two
orders of magnitude smaller than the binding energy asso-
ciated with a covalent bond. Hence, a computational model
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aimed at describing intermolecular interactions is subjected
to very strict requirements. The following ones are of partic-
ular importance:

Conceptual requirements The model should have a concep-
tual structure which facilitates interpretation, i.e. concepts
which help to illustrate the physical mechanism of the phe-
nomenon under study. By understanding the mechanism in-
volved, it is also easier to see how a mathematical model
should be refined, in order to get an improved description of
the problem in question.

Application for any intersystem distances In order to avoid
spurious results, the same model should be applicable for the
whole region of configuration space.

Size extensivity A model is size-extensive if, for two non-
interacting systems A and B, the calculated energy satisfies
the relation

E(A · · · B) = E(A)+ E(B) (1)

where E(A · · · B) is the calculated energy when A and B are
considered as a combined system, and E(A) and E(B) are
the energies of A and B, respectively, when they are treated
as separate systems. This property is of paramount impor-
tance for large systems, but even for small systems like the
dimers of helium and hydrogen, it is essential.

Avoidance of basis set artefacts Any molecular calculation
is based on an incomplete one-electron basis. This influences
the calculated result in two ways. First, the basis set might
not be sufficiently flexible to describe the changes taking
place during the formation of the complex, and the calcu-
lated energy will be too high. On the other hand, basis func-
tions which are centred on the nuclei of one subsystem, will
in a supersystem calculation improve the intrasystem part
of the wave functions corresponding to another subsystem.
This second effect, denoted the basis set superposition error
(BSSE), yields an artificial lowering of the energy of the
supersystem. A reliable approach requires that these effects
be controlled individually.
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Computational feasibility In order to be useful as a tool for
predicting or explaining properties related to intermolecular
interactions, a model has to perform well along this dimen-
sion.

There are two main classes for the calculation of intermo-
lecular potentials: methods which are based on considering
the interaction between the subsystems as a perturbation, and
the supermolecule approach where the interacting subsys-
tems are considered as a supermolecule. A description of
these different approaches may be found in the monographs
of Maitland et al. [3], Hobza and Zahradnik [4], and Stone
[5]. The model to be advocated in this work is within the
supermolecule framework.

The purpose of the present work is to construct a com-
putational model for large complexes comprising small sub-
systems, and where the accuracy of the calculation is close
to the accuracy of a calculation on a dimer comprising any
pair of subsystems for the complex.

The structure of the paper is as follows. Section 2 is de-
voted to the theoretical framework. In sect. 3, we introduce
the numerical models. Section 4 presents test calculations on
extended linear and planar complexes of helium.

2 The theoretical framework

2.1 The energy incremental method

The computational paradigm is the energy incremental method.
It was first introduced by Nesbet when he considered the
hierarchy of the Bethe–Goldstone equations [6]. According
to Nesbet the full configuration interaction (FCI) correlation
energy for an N -electron system can be written as

EFCI
corr =

N∑

i=1

ei +
N∑

i< j

ei j +
N∑

i< j<k

ei jk + · · · + e1 2···N (2)

In Eq. (2), the indices i, j, k, ... refer to occupied spin orbitals
of a Slater determinant. In this hierarchy, the basic unit is a
spin orbital. The determination of the corrections {ei }, {ei j },
{ei jk}, . . . are based on partial variational calculations.

Røeggen [7] introduced the extended geminal model for
a closed shell 2N -electron system. This model is also based
on the energy incremental method. However, the basic unit is
not a spin orbital but a two-electron wave function – a gem-
inal – associated with each electron pair. The geminals are
singlet-coupled. The energy is in this case

EFCI = EAPSG +
N∑

K=1

εK +
N∑

K<L

εK L

+
N∑

K<L<M

εK L M + · · · + ε1 2...N (3)

where EAPSG is the energy associated with the basic approxi-
mation which is an antisymmetric product of strongly orthog-
onal geminals (APSG). The summations in Eq. (3) are over

geminals. If all the geminals in the APSG wave function are
defined in terms of only one spatial orbital, i.e. the APSG
function is a restricted Hartree–Fock (RHF) wave function,
then the sum of the correction terms in Eq. (3) is the FCI cor-
relation energy. The energy incremental scheme introduced
by Stoll [8] is identical to an extended geminal approach
based on RHF geminals.

The feasibility and the accuracy of the energy incremental
method have been demonstrated in a large number of works
by Stoll and coworkers. The method has been applied to insu-
lators [9,10], semiconductors [11,12], rare-gas crystals [13],
polymers [14], graphite [15], and very recently to a calcula-
tion on the buckminsterfullerene C60 [16]. Røeggen [17] and
coworkers have used extended geminal models to calculate
the interatomic or intermolecular potential for several com-
plexes. References to these works can be found in the review
article on extended geminal models.

2.2 An extended group function model

On the basis of the extended geminal expansion, Eq. (3),
Røeggen et al. [18] introduced an extended group function
(EXGF) model. Their model is utilized in this work. Proper
geminals, i.e. each geminal is defined in terms of more than
one spatial orbital, have a localized character as a result of
the optimization of the APSG function. If the basic approx-
imation is an RHF function, which is assumed in this work,
the orbitals are localized. We have previously advocated a
minimal distortion localization scheme [2,19]. The local-
ized supersystem orbitals are obtained by minimizing a least-
square deviation from the isolated subsystem orbitals. Then
the nuclei and the electron pairs (orbitals) localized in the
same part of the physical space define the subsystems. We
assume that our complex consists of n interacting subsys-
tems and subsystem number s comprises Ns electron pairs.
A simple reordering of the terms in Eq. (3) yields

EEXGF = ERHF +
n∑

s=1

{ Ns∑

K=1

εs,K

+
Ns∑

K1<K2

εs,K1 K2 + · · · + εs,1 2...Ns

⎫
⎬

⎭

+
n∑

s<t

⎧
⎨

⎩

Ns∑

K=1

Nt∑

L=1

εs,K ;t,L +
Ns∑

K1<K2

Nt∑

L=1

εs,K1 K2;t,L

+
Ns∑

K=1

Nt∑

L1<L2

εs,K ;t,L1 L2 + · · ·
⎫
⎬

⎭

+
n∑

s<t<u

{ Ns∑

K=1

Nt∑

L=1

Nu∑

M=1

εs,K ;t,L;u,M +· · ·
}

+· · ·

(4)

The particular way the terms are grouped in Eq. (4) leads
naturally to a simple expression for the energy
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EEXGF = ERHF+
n∑

s=1

Es
corr+

n∑

s<t

Es,t
corr+

n∑

s<t<u

Es,t,u
corr +· · ·

(5)

The definition of the terms in Eq. (5) should be obvious. How-
ever, we can reinterpret the terms in Eq. (5). The term Es

corr,
which we might denote a one-body correlation term, is sim-
ply the correlation energy for subsystem s. In principle, it is
obtained by an FCI calculation on subsystem number s when
the residual subsystems are described by an RHF approxima-
tion. Similarly, the two-body correlation term, Es,t

corr, is the
intersystem correlation energy for s and t when the resid-
ual subsystems are described by an RHF approximation. It
is identical to the difference between the FCI energy correc-
tion for the composite system s + t in the supersystem minus
the FCI correlation energies for the subsystems s and t . The
reinterpretation of the higher order terms is equally simple.

In a computational scheme, we can either use the gemi-
nal correction terms directly as defined in Eq. (4), or approxi-
mate the terms in Eq. (5) by another size-extensive procedure,
say a coupled cluster approach. A combination of different
procedures is also possible, say a coupled cluster model for
intrasystem correlation and an extended geminal model for
intersystem correlation.

2.3 Decomposition of the intermolecular potential

Within this framework the intermolecular potential is defined
as

U = EEXGF+
n∑

s=1

Es
nuc+

∑

s<t

Es,t
nuc−

n∑

s=1

{
Es

nuc+EEXGF,s
sep

}

(6)

In Eq. (6) EEXGF is the energy of the supersystem based on
the standard Hamiltonian, i.e. including one- and two-elec-
tron operators, Es

nuc is the nuclear electrostatic energy for
subsystem number s (if there is only one nucleus in subsys-
tem number s, Es

nuc = 0), Es,t
nuc is the nuclear electrostatic

energy between the subsystems number s and t , and EEXGF,s
sep

is the energy for the isolated subsystem number s. By follow-
ing the derivation in Ref. [18] we obtain

U = �dist+�int

=
n∑

s=1

�s
dist+

n∑

s<t

{
�

s,t
Coul+�s,t

exch+�s,t
corr

}

+
n∑

s<t<u

�s,t,u
corr +· · · (7)

The explicit form of the terms in Eq. (7) is given in Ref. [9],
but the terms have simple interpretations. �s

dist denotes the
distortion of subsystem number s, i.e. the change in energy
of the subsystem in the presence of the other subsystems,
�

s,t
Coul denotes the Coulomb interaction between the distorted

charge distributions of subsystems number s and t ,�s,t
exch and

�
s,t
corr are, respectively, the exchange and correlation terms

related to these systems. In Eq. (7) there is a slight notational
change:

�s,t
corr = Es,t

corr (8)

�s,t,u
corr = Es,t,u

corr (9)

The expressions for the intermolecular potential in Eq. (7) has
the structure of a sum of one-body terms, two-body terms up
to n-body terms. However, it should not be confused with the
conventional way of writing the potential in terms of two-
body potentials, three-body potentials up to n-body poten-
tials. In Eq. (7), all terms are in a sense n-body terms since
the perturbed state of a subsystem depends on all its partner
subsystems.

The intermolecular potential can be expressed as a sum
of effective intrasystem terms:

U =
n∑

s=1

⎧
⎪⎪⎨

⎪⎪⎩
�s

dist+
1

2

n∑

t
t �=s

�
s,t
int

+ 1

3

[
n∑

s<t<u

�
s,t,u
int +

n∑

t<s<u

�
t,s,u
int +

n∑

t<u<s

�
t,u,s
int

]
+· · ·

}

=
n∑

s=1

�s
eff,add (10)

For simplicity, we have introduced the subscript “int” on
the interaction terms in Eq. (10). The definition of the cor-
responding terms should be obvious. The expression of the
potential given by Eq. (10) is useful when an extended sys-
tem is considered. If the system is periodic, we can restrict the
calculation to the effective additive terms for the subsystems
in the unit cell.

3 Numerical models

In dealing with a complex comprising a large number of sub-
systems, a straightforward or brute force application of a con-
ventional ab initio quantum chemistry model is not feasible.
Novel developments are highly requested. In this work, we
shall introduce three new elements in a computational scheme
for intermolecular interactions. First, intra- and intersystem
contributions to the intermolecular potential shall be calcu-
lated by using model systems rather than the whole complex.
Second, dual basis sets shall be adopted, i.e. a combination
of small and large basis sets. Third, Cholesky decomposition
of the two-electron integral matrix shall be used in order to
reduce storage requirements and computation time.

3.1 Partner subsystems

The key idea is that for weakly interacting subsystems, the
perturbed state of a subsystem in the complex is essentially
determined by the subsystems in the vicinity of the system.
To make use of this fact, we introduce for each subsystem
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a set of partner subsystems. If Rs,t
min is the minimum dis-

tance between the nucleus of subsystem number s and the
nucleus of subsystem number t , then the partner subsystems
for subsystem number s, �partner

s , includes all subsystem for
which Rs,t

min ≤ Rthreshold, where Rthreshold is a chosen thresh-
old distance. The model system for subsystem number s con-
sists then of subsystem number s and its partner subsystems
�

partner
s . When we calculate the intrasystem energy for sub-

system number s, we use the model system instead of the
whole complex.

When we consider the interaction energy between two
subsystems, say subsystems number s and t , we introduce
the partner subsystems for this pair of subsystems:

�
partner
s,t = �

partner
s ∪�partner

t −�
partner
s ∩�partner

t (11)
The model system for this pair of subsystems is then subsys-
tems number s and t plus the partner subsystems�partner

s,t . The
calculation of the intersystem energy for the pair (s, t) is then
performed with the model system as the physical system.

In principle, the three-body and higher-order interaction
terms can be obtained by a similar procedure.

3.2 Dual basis sets

Dual basis sets have been used by King and coworkers [20,
21] in the calculation of self-consistent field (SCF) wave
functions for Rydberg states, and Jurgens–Lutovski and
Almlöf [22] introduced dual basis sets in the calculation of
the second-order Møller–Plesset correlation energy. More re-
cently, Wolinski and Pulay [23] have elaborated on the ideas
of Jurgens–Lutovski and Almlöf. A dual basis approach has
also been implemented in the program package MOLPRO
[24]. The idea of Jurgens–Lutovski and Almlöf was to use
a smaller basis set for the SCF wave function and a larger
basis set for the correlation part. In order to satisfy the ortho-
gonality condition between occupied orbitals (small basis)
and virtual orbitals (large basis), the small basis was chosen
as a subset of the large basis.

In this work, we use the dual basis concept in a slightly
different manner. The small basis set is used for the partner
subsets in a calculation. This implies that in the calculation
of the intrasystem energy of subsystem number s, the large
basis set is utilized for subsystem number s and the small
basis sets for the partner subsystems �partner

s . Similarly, for
the calculation of the interaction energy between subsystems
number s and t , the large basis sets are utilized for the subsys-
tems number s and t , and the small basis sets are associated
with the partner subsystems �partner

s,t . Since small and large
basis sets are associated with different subsystems, there is
no requirement that the small basis should be a subset of the
larger one for a given subsystem.

3.3 Cholesky decomposition

The idea of a Cholesky decomposition of the two-electron
integral matrix was first suggested by Beebe and Linderberg

[25], and later Røeggen and coworkers [17,26] used this ap-
proach in a large number of studies of intermolecular inter-
actions (see [17] for references to previous works). More
recently Koch et al. [27] have devised an efficient algorithm
for the decomposition.

Let the atomic orbital basis be denoted {Xμ; μ = 1,
. . . ,m}. A two-electron integral (in Mullikan’s notation) [μν |
λσ ] is related to the integral tables (obtained by the Cholesky
decomposition) {Lμν;t , t = 1, . . . , rδ} by the relation

[μν | λσ ] =
rδ∑

t=1

Lμν;t Lλσ ;t (12)

where rδ is the effective numerical rank of the two-elec-
tron integral matrix. The theoretical maximum value of rδ is
m(m+1)/2. However, rδ is in practice, considerably smaller.
If we write δ = 10−p, then in most cases rδ satisfies the
inequality [26]
pm < rδ < (p + 1)m (13)
Compared with the storage of the two-electron integral ma-
trix, the storage of the integral tables leads to a large reduction
of storage requirements. The storage requirement can be fur-
ther reduced by storing only the non-negligible elements of
the integral tables [26,27].

A second advantage of using integral tables is the sim-
plicity in obtaining transformed two-electron integrals. This
transformation is performed according to the formulas

ψi =
m∑

μ=1

XμUμi (14)

Li j;t =
m∑

μ,ν=1

Uμi Lμν;tUν j (15)

[i j | kl] =
rδ∑

t=1

Li j;t Lkl;t (16)

It is obvious that an algorithm defined by Eqs. (14), (15) and
(16) can be effectively coded for parallel processor comput-
ers.

3.4 Elimination of BSSE and localization of orbitals

The BSSE is eliminated by the Boys–Bernardi counterpoise
correction scheme [28]. In the calculation of the intrasys-
tem energy for the isolated system, one utilizes the full basis
associated with a subsystem and its partner subsystems. For
a given model system one calculates the occupied orbitals for
all the isolated subsystems of this model system using the full
model system basis. The orbitals for the isolated subsystems
are utilized in two ways. First, they are used as start orbitals
in the iterative procedure for determining the occupied orbi-
tals of the model system. Second, they serve as target orbitals
in the minimal distortion localization procedure [2,19]. The
localized orbitals are obtained by minimizing the functional

L =
∑

i

wi ‖ ϕmodelsyst
i − ϕisolated

i ‖2 (17)
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In Eq. (17), {ϕmodelsyst
i } denote the localized orbitals to be

determined while {ϕisolated
i } are the corresponding orbitals of

the isolated subsystems. The weight factors {wi } are included
to give some preference to the innermost orbitals. Physically,
we expect core orbitals to be less affected by the interac-
tion with the neighbouring subsystems than valence orbitals.
Hence, we choose (somewhat arbitrarily)

wi = ∣∣〈ϕisolated
i | F ϕisolated

i

〉∣∣2
(18)

where F is the Fock operator. By this choice we obtain the
smallest distortion of the core orbitals with respect to the
orbitals of the isolated subsystems.

3.5 EXGF model based on an extended geminal model

In the first implementation of the advocated EXGF model,
the electron correlation terms are calculated according to the
extended geminal expansion, i.e. Eq. (4). Furthermore, the
expansion is truncated at the double-pair level. Hence,

EEXGF = ERHF +
n∑

s=1

⎧
⎨

⎩

Ns∑

K=1

εs,K +
Ns∑

K1<K2

εs,K1 K2

⎫
⎬

⎭

+
n∑

s<t

Ns∑

K=1

Nt∑

L=1

εs,K ;t,L (19)

As for the details concerning the calculation of {εK } and
{εK L}, we refer to our previous works [2,18].

4 Test calculations on helium complexes

In this section, we shall present test calculations on different
helium complexes: helium dimer; atoms in infinite,
one-dimensional lattice; and infinite, two-dimensional, hex-
agonal latttice. We shall focus on the binding energy per atom.
But we shall also look at the character of bonding and the
difference in bonding when we consider the three types of
clusters.

4.1 Computational details

For all calculations, we adopt family-type basis sets, i.e. if η
is the exponent of a Gaussian- type function (GTF) of angu-
lar momentum �, then the same exponent is included in the
sets of exponents for all subsets of GTFs of lower angular
momentum. Furthermore, the basis is an even-tempered one,
i.e. the exponents form a geometrical series

ηi = αβ i−1, i = 1, 2, . . . ,m . (20)

Integral calculations can be simplified by using family-type
basis sets since fewer Hermite functions are required in the
calculation of the two-electron matrix. This feature is imple-
mented in our code for the decomposition of the two-electron

integral matrix. The details of this approach will be discussed
elsewhere. Unfortunately, there are very few optimized fam-
ily-type basis sets to be found in the literature. Hence, we
have to construct the basis sets.

The procedure for the construction of the large basis set
is as follows. First, an uncontracted (16s, 4p, 3d, 2 f, 1g) set
of GTFs is determined by energy minimization. The expo-
nent of the g-type functions is number 5 in the ascending
sequence of exponents. The optimized set yields an RHF
energy for the ground state of the helium atom equal to
−2.86167435Eh (−2.86168000Eh [29]) and a correlation
energy equal to −0.04148619Eh (−0.04204529Eh [30]), the
exact values in parentheses. Second, the optimized set is aug-
mented with three sets of diffuse function in each symme-
try, the exponents chosen as an even-tempered extension.
Third, two sets of h-type functions with small exponents are
added. Accordingly, the large basis comprises an uncontract-
ed (19s, 7p, 6d, 5 f, 4g, 2h) set of GTFs. The exponents of
the polarization functions and the exponents for the most dif-
fuse s-type functions are given in Table 1.

The small basis is an uncontracted (12s, 2p, 1d) set of
GTFs. The exponent of the d-type function is number 3 in
the ascending sequence of exponents. The exponents are
obtained by energy minimization. The resulting even-tem-
pered parameters are α = 0.2133784 and β = 3.2924.
The RHF and correlation energy are −2.86146707Eh and
−0.03935317Eh, respectively.

For the truncated virtual spaces, we use 82 natural orbitals
for both the single- and double-pair correlation terms.

4.2 Helium dimer

The helium dimer is included in order to evaluate the quality
of the calculation. The interatomic potential is calculated for
the interatomic distances, 5.60, 5.61 and 5.62 a.u., close to the
minimum. A parabolic fit yields a well depth of 34.60μEh
and an equilibrium distance of 5.6109 a.u. This result com-
pares favourably with the exact quantum Monte Carlo calcu-
lation of Anderson [31]: a well depth of (34.77 ± 0.06)μEh
and equilibrium distance of 5.6 a.u.

A key feature in our approach is the approximation of
the double-pair correlation terms. The term εK L is written as
a full CI term plus a basis set extension (BSE) based on an

Table 1 Orbital exponents of the most diffuse s-type functions and the
polarization functions for the (19s, 7p, 6d, 5 f, 4g, 2h) GTF basis

Exponent/symmetry s p d f g h

17. 1240744 x
6.5459000 x x x x x
2.5022554 x x x x x
0.9565196 x x x x x x
0.3656421 x x x x x x
0.1397714 x x x x
0.0534294 x x x
0.0204241 x x
0.0078074 x
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MP2-type correction [17]:

εK L = εFCI
K L + εBSE

K L (21)

At the internuclear distance R = 5.61 a.u. we have εFCI
K L =

−66.47μEh and εBSE
K L = −0.12μEh. Hence, the four-electron

FCI term accounts for 99.8% of the intersystem correlation
energy obtainable with the adopted basis set.

The threshold used in the Cholesky decomposition of
the two-electron integral matrix, affects the calculated po-
tential. In Table 2 we display values of the interatomic po-
tential for the equilibrium distance Req = 5.61 a.u. based
on different values of the threshold δChol. We notice that for
δChol < 10−6 Eh, the values of the potential differ with less
than 10−9 Eh. The variation which is observed for the three
values 10−6 Eh, 10−7 Eh and 10−8 Eh is likely to be due to
numerical round-off errors. It is a bit remarkable that a thresh-
old value as large as 10−4 Eh yields only an error in the po-
tential of the order of 0.01μEh. The reason might be that
the occupied orbitals are s-type orbitals which are very well
described by the first (and dominant) tables in the decompo-
sition. On the basis of the information in Table 2, it seems safe
to conclude that a decomposition threshold less than 10−6 Eh
yields errors in the potentials which in magnitude are smaller
than 10−2μEh.

Table 3 displays a decomposition of the interatomic po-
tential for selected values of the interatomic distance; i.e.
multiples of the equilibrium distance Req = 5.61 a.u. The
decomposition is of interest when we consider the one- and
two-dimensional lattices in the next subsection. We notice in
particular that when R ≥ 2Req, the interatomic potential is
completely determined by the correlation component.

4.3 Basis sets and number of partner subsystems

The lattice constant is equal to the equilibrium distance for
the dimer potential, i.e. 5.61 a.u. The decomposition thresh-
old for the Cholesky procedure is 10−8 Eh.

Table 2 Interatomic potential for the helium dimer as a function of the
Cholesky two-electron integral threshold

δChol U (R=5.61 a.u.) E total(δChol)− E total(δChol = 10−8 a.u.)
(Eh) (μEh) (μEh)

10−3 −34.8772 −1.9024
10−4 −34.6130 0.0525
10−5 −34.6056 0.0106
10−6 −34.6017 0.0039
10−7 −34.6022 0.0043
10−8 −34.6018 0.0a

a E tot(δChol = 10−8 Å) = −5.8066955997 Eh

Table 3 Decomposition of the interatomic potential for the helium dimer

R (a.u.) �dist (μEh) �
1,2
Coul (μEh) �

1,2
exch (μEh) �

1,2
corr (μEh) �

1,2
int (μEh) U (μEh)

5.61 50.31 −44.32 −24.24 −66.66 −34.603
11.22 0.0 0.0 0.0 −0.794 −0.794 −0.794
16.83 0.0 0.0 0.0 −0.066 −0.066 −0.066
22.44 0.0 0.0 0.0 −0.012 −0.012 −0.012

In the application of the procedure advocated in this work,
two questions must be addressed first: the size of the basis sets
for the partner subsystems, and the number of partner subsys-
tems required for the model systems. As for the first question,
we have considered four different basis sets. The smallest
one is the (12s, 2p, 1d) GTF set defined in Sect. 4.1. This
set is augmented with one and two sets of diffuse functions
in each symmetry, constructed as an even-tempered exten-
sion of the (12s, 2p, 1d) set, yielding a (13s, 3p, 2d) and
a (14s, 4p, 3d) set. The fourth set is an energy optimized
(14s, 3p, 2d, 1 f )GTF set. Table 4 displays the effective one-
body potential adopting these four different basis sets. The
(14s, 4p, 3d)yields the “best” result, but the variation is quite
small. Since the result pertaining to the smallest set, deviates
only 0.01μEh from the result of the (14s, 4p, 3d) set, we
consider the (12s, 2p, 1d) set to be appropriate for the cal-
culations on the one- and two-dimensional lattices.

The answer to the second question, i.e. the number of
required partner subsystems, can be found in the results pre-
sented in Table 5. The binding energy per atom is practically
stable when we increase the number of partner subsystems
from two to four or six. Hence, for helium clusters with near-
est neighbour (nn) distances equal to 5.61 a.u., it is sufficient
to include only the nearest neighbour atoms in the set of part-
ner atoms.

As for the character of the bonding in a one-dimensional
lattice of atoms, we postpone our comments to the next sub-
section where we compare three different clusters: dimer,
one- and two-dimensional lattices of atoms.

4.4 Hexagonal lattice of helium atoms

In this subsection, we consider a two-dimensional hexagonal
lattice with lattice parameter equal to 5.61 a.u. Since we have
calculated the interatomic interactions independently, i.e. in
different runs on the computer, the Cholesky decomposition
threshold varied between 1.0 × 10−7Eh and 2.3 × 10−7Eh
due to a fixed number of integral tables which can be stored
on each processor. As demonstrated in Table 2, this variation
will hardly affect the results.

In Table 6, we present a decomposition of the interaction
energy between atoms in this lattice. We notice that with dis-
tances larger than or equal to two times the lattice parameter
(3nn), the interaction energy is completely determined by
the interatomic correlation energy. Hence, the contribution
to the binding energy per atom from pairs with large inter-
atomic distances can be easily estimated. The interatomic
distance for the (5nn)-pairs is three times the lattice con-
stant and the corresponding interatomic correlation energy is
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Table 4 The effective one-body potential of a one-dimensional lattice
of helium atoms for different basis set for the partner subsystems

Basis:GTF �s
eff,add(μEh)

12s, 2p, 1d −35.49
13s, 3p, 2d −35.47
14s, 4p, 3d −35.50
14s, 3p, 2d, 1 f −35.48

The distance between nearest neighbour atoms: 5.61 a.u.; number of
partner subsystems: two

Table 5 Effective one-body potential of a one-dimensional lattice of
helium atoms for different number of partner subsystems; the small
basis, i.e. (12s, 2p, 1d), is adopted for partner subsystems

Npartner �s
eff,add (μEh)

2 −35.486
4 −35.485
6 −35.486

−0.0657μEh. The long-range interaction energy is given by
the well-known formula

�
1,2
int = − C6

R6
12

− C8

R8
12

− · · · (22)

Table 6 Decomposition of the interaction energy between pairs of atoms in a two-dimensional hexagonal lattice, and contribution from different
pairs to the binding energy per atom (lattice constant: 5.61 a.u.)

Pairs of atoms Number of pairs in each group �
1,2
Coul(μEh) �

1,2
exch(μEh) �

1,2
corr(μEh) �

1,2
int (μEh) 1

2��
1,2
int (μEh)

1nn 6 −42.85 −23.63 −66.35 −132.83 −398.49
2nn 6 −0.01 0.0 −1.92 −1.93 −5.79
3nn 6 0.0 0.0 −0.80 −0.80 −2.40
4nn 12 0.0 0.0 −0.14 −0.14 −0.84
5nn 6 0.0 0.0 −0.07 −0.07 −0.21
R12 > 16.83 a.u. ∞ −0.40a

nn: Nearest neighbour
aEstimated

Table 7 Decomposition of the interaction energy for pairs of nearest neighbour atoms in different complexes

Complex �
1,2
Coul (μEh) �

1,2
exch (μEh) �

1,2
corr(μEh) �

1,2
int (μEh)

Dimera −44.32 −24.24 −66.66 −135.22
One-dimensional latticea −44.34 −24.25 −66.65 −135.24
Two-dimensional latticea −42.85 −23.63 −66.35 −132.83

aDistance between nearest neighbour atoms: 5.61 a.u.

Table 8 Decomposition of the interaction energy for pairs of atoms at a distance R = 11.22 a.u. (2 × nearest neighbour distance), in different
complexes

Complex �
1,2
Coul (μEh) �

1,2
exch (μEh) �

1,2
corr (μEh) �

1,2
int (μEh)

Dimer 0.0 0.0 −0.794 −0.794
One-dimensional lattice 0.0 0.0 −0.797 −0.797
Two-dimensional lattice 0.0 0.0 −0.794 −0.794

Table 9 Contribution to the binding energy per atom per number of nearest atoms, in different complexes including only the nearest neighbours

Complex �dist/Nnn (μEh) �
1,2
int /2 (μEh) �dist/Nnn +�

1,2
int /2 (μEh)

Dimera 50.31 −67.61 −17.30
One-dimensional latticea 50.32 −67.62 −17.30
Two-dimensional latticea 48.89 −66.42 −17.53

aDistance between nearest neighbour atoms: 5.61 a.u.

Standard and Certain [32] give upper and lower bounds to the
coefficients C6 and C8: (1.44, 1.47)Eh and (13.9, 14.2)Eh,
respectively. By including only the two dominant terms in
Eq. (22) and using the average value of the upper and lower
bounds of C8, we obtain C6 = 1.443Eh when �1,2

int is set
equal to our calculated value of −0.0657μEh. In the esti-
mate of the contribution to the binding energy per atom, from
pairs of atoms with large interatomic distances, i.e. R12 ≥
16.83 a.u., the average values of the bounds to C6 and C8 are
adopted.

The distortion energy of an atom in the hexagonal lattice,
�dist, is 293.34μEh. Hence, we obtain a binding energy per
atom equal to 114.79μEh.

In Tables 7, 8 and 9 we perform comparisons among three
different complexes: dimer, atoms in one- and two-dimen-
sional lattices. First of all, we notice the strong accordance
between dimer energy components and the corresponding
components for atoms in the one-dimensional lattice. Neglect-
ing the three-body correlation terms for the time being, we
may state that the binding energy per atom for a one-dimen-
sional lattice can be calculated by using only the dimer poten-
tials. Second, not surprisingly, it is the nearest neighbour
structure which is important for describing the deviation from
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a pure pair potential approach. Interaction energies between
non-nearest neighbour atoms are practically the same in the
two lattices. Third, the contribution to the binding energy per
atom per number of nearest neighbour atoms differs by only
0.23μEh for the two lattices, i.e. only 1.3% of the binding
energy in question. One might perhaps be tempted to suggest
that for helium clusters the genuine N -body terms (N > 2)
are not very important. However, a word of caution is appro-
priate. When we consider the distortion energy and the inter-
action energy separately Table 9 we notice larger differences
between corresponding components for the two lattices. The
partitioned distortion energies and the partitioned interac-
tion energies differ in magnitude by 1.43μEh and 1.20μEh,
respectively. However, the differences have opposite sign.
Hence, a large cancellation occurs in the calculation of the
binding energy. Such a large cancellation compared with the
pair potential approximation, might not be the case when
other types of structures are considered. In a preliminary cal-
culation on atoms in a three-dimensional face-centred cubic
lattice, using the advocated approach, the distortion energy
per atom divided by the number of nearest neighbour atoms is
47.48μEh while the partitioned interaction energy between
the nearest neighbour atoms is −66.29μEh. Accordingly, the
binding energy in question is 18.81μEh. For this particular
structure, the genuine N -body terms represent 8.7%.

In this work, we have omitted three-body correlation terms.
But they are not completely negligible. Røeggen and Almlöf
[33] have calculated the three-body potential for the helium
trimer for selected geometries. They demonstrated that when
all three interatomic distances were larger than 5.5 a.u., then
the three-body correlation term was well represented by the
Axilrod–Teller triple dipole interaction [34], i.e.

εAT
123 = C9

(1 + 3 cos γ1 cos γ2 cos γ3)

R3
12 R3

13 R3
23

(23)

where R12, R13 and R23 are the distances between the three
atoms involved, and γ1 is the angle defined by the sides R12
and R13 of the He3 triangle, and with similar definitions for γ2
and γ3. According to Standard and Certain [32], the average
value of the upper and lower bounds to C9 is 1.473Eh. On the
basis of the Axilrod–Teller approximation, we arrive at the
value of 0.66μEh for the three-body correlation contribution
to the binding energy per atom, i.e. a relative contribution of
0.6%.

5 Concluding remarks

The advocated model satisfies the requirements formulated in
the Sect. 1: the inherent conceptual structure facilitates inter-
pretation, the model can be applied for any intersystem dis-
tance, it is size-extensive, basis set artefacts can be avoided,
and finally, the model is feasible from a computational point
of view. Test calculation on various helium systems indicate

that the model is capable of producing very accurate PES.
Work is now under way to consider helium atoms in infinite,
three-dimensional lattices.
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